Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.

Identifieur interne : 003C39 ( Main/Exploration ); précédent : 003C38; suivant : 003C40

Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.

Auteurs : Donald R. Zak [États-Unis] ; William E. Holmes ; Kurt S. Pregitzer

Source :

RBID : pubmed:18027765

Descripteurs français

English descriptors

Abstract

Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well as the microbial supply of N from soil organic matter. To address this uncertainty, we initiated an ecosystem-level 15N tracer experiment at the Rhinelander (Wisconsin, USA) free air CO2-O3 enrichment (FACE) facility to understand how projected increases in atmospheric CO2 and 03 alter the distribution and flow of N in developing northern temperate forests. Tracer amounts of 15NH4+ were applied to the forest floor of developing Populus tremuloides and P. tremuloides-Betula papyrifera communities that have been exposed to factorial CO2 and O3 treatments for seven years. One year after isotope addition, both forest communities exposed to elevated CO2 obtained greater amounts of 15N (29%) and N (40%) from soil, despite no change in soil N availability or plant N-use efficiency. As such, elevated CO2 increased the ability of plants to exploit soil for N, through the development of a larger root system. Conversely, elevated O3 decreased the amount of 15N (-15%) and N (-29%) in both communities, a response resulting from lower rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil N. Neither CO2 nor 03 altered the amount of N or 15N recovery in the forest floor, microbial biomass, or soil organic matter. Moreover, we observed no interaction between CO2 and 03 on the amount of N or 15N in any ecosystem pool, suggesting that 03 could exert a negative effect regardless of CO2 concentration. In a CO2-enriched atmosphere, greater belowground growth and a more thorough exploitation of soil for growth-limiting N is an important mechanism sustaining the enhancement of NPP in developing forests (0-8 years following establishment). However, as CO2 accumulates in the Earth's atmosphere, future O3 concentrations threaten to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests.

DOI: 10.1890/06-1819.1
PubMed: 18027765


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.</title>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109, USA. drzak@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109</wicri:regionArea>
<wicri:noRegion>Michigan 48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holmes, William E" sort="Holmes, William E" uniqKey="Holmes W" first="William E" last="Holmes">William E. Holmes</name>
</author>
<author>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:18027765</idno>
<idno type="pmid">18027765</idno>
<idno type="doi">10.1890/06-1819.1</idno>
<idno type="wicri:Area/Main/Corpus">003A13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A13</idno>
<idno type="wicri:Area/Main/Curation">003A13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003A13</idno>
<idno type="wicri:Area/Main/Exploration">003A13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.</title>
<author>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109, USA. drzak@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109</wicri:regionArea>
<wicri:noRegion>Michigan 48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holmes, William E" sort="Holmes, William E" uniqKey="Holmes W" first="William E" last="Holmes">William E. Holmes</name>
</author>
<author>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Ecosystem (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Ozone (pharmacology)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Soil (analysis)</term>
<term>Soil (standards)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Ozone (pharmacologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (métabolisme)</term>
<term>Sol (analyse)</term>
<term>Sol (normes)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="normes" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="standards" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Ecosystem</term>
<term>Nitrogen Isotopes</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Isotopes de l'azote</term>
<term>Microbiologie du sol</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well as the microbial supply of N from soil organic matter. To address this uncertainty, we initiated an ecosystem-level 15N tracer experiment at the Rhinelander (Wisconsin, USA) free air CO2-O3 enrichment (FACE) facility to understand how projected increases in atmospheric CO2 and 03 alter the distribution and flow of N in developing northern temperate forests. Tracer amounts of 15NH4+ were applied to the forest floor of developing Populus tremuloides and P. tremuloides-Betula papyrifera communities that have been exposed to factorial CO2 and O3 treatments for seven years. One year after isotope addition, both forest communities exposed to elevated CO2 obtained greater amounts of 15N (29%) and N (40%) from soil, despite no change in soil N availability or plant N-use efficiency. As such, elevated CO2 increased the ability of plants to exploit soil for N, through the development of a larger root system. Conversely, elevated O3 decreased the amount of 15N (-15%) and N (-29%) in both communities, a response resulting from lower rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil N. Neither CO2 nor 03 altered the amount of N or 15N recovery in the forest floor, microbial biomass, or soil organic matter. Moreover, we observed no interaction between CO2 and 03 on the amount of N or 15N in any ecosystem pool, suggesting that 03 could exert a negative effect regardless of CO2 concentration. In a CO2-enriched atmosphere, greater belowground growth and a more thorough exploitation of soil for growth-limiting N is an important mechanism sustaining the enhancement of NPP in developing forests (0-8 years following establishment). However, as CO2 accumulates in the Earth's atmosphere, future O3 concentrations threaten to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18027765</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>88</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.</ArticleTitle>
<Pagination>
<MedlinePgn>2630-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well as the microbial supply of N from soil organic matter. To address this uncertainty, we initiated an ecosystem-level 15N tracer experiment at the Rhinelander (Wisconsin, USA) free air CO2-O3 enrichment (FACE) facility to understand how projected increases in atmospheric CO2 and 03 alter the distribution and flow of N in developing northern temperate forests. Tracer amounts of 15NH4+ were applied to the forest floor of developing Populus tremuloides and P. tremuloides-Betula papyrifera communities that have been exposed to factorial CO2 and O3 treatments for seven years. One year after isotope addition, both forest communities exposed to elevated CO2 obtained greater amounts of 15N (29%) and N (40%) from soil, despite no change in soil N availability or plant N-use efficiency. As such, elevated CO2 increased the ability of plants to exploit soil for N, through the development of a larger root system. Conversely, elevated O3 decreased the amount of 15N (-15%) and N (-29%) in both communities, a response resulting from lower rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil N. Neither CO2 nor 03 altered the amount of N or 15N recovery in the forest floor, microbial biomass, or soil organic matter. Moreover, we observed no interaction between CO2 and 03 on the amount of N or 15N in any ecosystem pool, suggesting that 03 could exert a negative effect regardless of CO2 concentration. In a CO2-enriched atmosphere, greater belowground growth and a more thorough exploitation of soil for growth-limiting N is an important mechanism sustaining the enhancement of NPP in developing forests (0-8 years following establishment). However, as CO2 accumulates in the Earth's atmosphere, future O3 concentrations threaten to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zak</LastName>
<ForeName>Donald R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109, USA. drzak@umich.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmes</LastName>
<ForeName>William E</ForeName>
<Initials>WE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pregitzer</LastName>
<ForeName>Kurt S</ForeName>
<Initials>KS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18027765</ArticleId>
<ArticleId IdType="doi">10.1890/06-1819.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Holmes, William E" sort="Holmes, William E" uniqKey="Holmes W" first="William E" last="Holmes">William E. Holmes</name>
<name sortKey="Pregitzer, Kurt S" sort="Pregitzer, Kurt S" uniqKey="Pregitzer K" first="Kurt S" last="Pregitzer">Kurt S. Pregitzer</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zak, Donald R" sort="Zak, Donald R" uniqKey="Zak D" first="Donald R" last="Zak">Donald R. Zak</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18027765
   |texte=   Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18027765" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020